Important Questions for School Level Exams

Important Questions of Chapter Units and dimensions

Revision Assignment 1

Q1) Assuming that the critical velocity Vc of a various liquid flowing through a capillary tube depends upon the radius a of the tube, the density ρ and the coefficient of viscosity η of the liquid, obtain a relation between Vc, ρ, η and a . $[$ Sol : $\mathbf{a}=-\mathbf{1}, \mathbf{b}=\mathbf{- 1}, \mathrm{c}=1$]

Q2) Assuming the frequency v of a vibrating string may depend upon (1) applied load (F)
(2) length (I) of the string and mass per unit length (m), prove that

Q3) The fundamental mode of frequency of a stretched string is found to depend upon a) length of string (I) (b) tension in string (T) $\begin{array}{lll}\text { (c) mass per unit length (} m \text {). Find expression for frequency. }\end{array}$
[Sol : $a=-1, b=1 / 2, c=-1 / 2]$

Q4) Find by method of dimensions an expression of energy of the body executing SHM . assuming this energy depends upon (1) mass (m) (2) frequency (f)
(3) amplitude of vibration (r) [Sol :a=1, b=2, c=2]

Q5) The terminal velocity ' v ' of a spherical body falling in a liquid is found to be depend upon
a) radius of body (r)
b) coefficient of viscosity $\left({ }^{\eta}\right)$
c) viscous drag experienced by the body (F)
[Sol :a = -1, b=-1, c=1]

Q6) Check the correctness of the following relation : $T=2 \pi \sqrt{\frac{l}{g}} \quad$ [correct]

Important Questions for School Level Exams

Q7) The wavelength λ associated with moving particle depend upon its mass (m), velocity (v) and plank's constant (h) and is given by $\lambda=\frac{h}{m v}$.Check the correctness of the given relation. [correct] Q8) Find dimensions of a and b in the relation : $\quad \mathrm{F}=a \sqrt{x}+b t^{2} \quad$ where $\mathrm{f}=$ force , $\mathrm{x}=$ dist, $\mathrm{t}=$ time $\left[\right.$ Sol : $\left.a=\left[M L^{1 / 2} \mathrm{~T}^{-2}\right], b=\left[\mathrm{MLT}^{-4}\right]\right]$

Q9) In the given equation $\mathrm{y}=\mathrm{A} \sin (\omega t-K x)$, find the dimensional formula of ω and K . Given x is distance and t is time. [Sol: $\left.\mathrm{T}^{-1}, \mathrm{~L}^{-1}\right]$

Q10) The S.I unit of universal gravitational constant is $6.67 * 10-11 \mathrm{Nm} 2 \mathrm{Kg}-2$. convert this value in to corresponding c.g.s with the help of dimensional formutae [Sol : 6.67×10^{-8}]

Q11. The density of mercury is $13.6 \mathrm{~g} \mathrm{~cm}^{3}$ in CGS System. Find its value in SI units.

Q12. Write Disadvantages of Dimensional Analysis

