Important Questions of Chapter Units and dimensions

Revision Assignment 1

- Q1) Assuming that the critical velocity Vc of a various liquid flowing through a capillary tube depends upon the radius a of the tube , the density $^{\rho}$ and the coefficient of viscosity $^{\eta}$ of the liquid , obtain a relation between Vc , $^{\rho}$, $^{\eta}$ and a. [Sol : a=-1 , b = -1 ,c=1]
- Q2) Assuming the frequency v of a vibrating string may depend upon (1) applied load (F)
- (2) length (I) of the string and mass per unit length (m) , prove that \sqrt{m}
- Q3) The fundamental mode of frequency of a stretched string is found to depend upon a) length of string (I) (b) tension in string (T) (c) mass per unit length (m). Find expression for frequency.

- Q4) Find by method of dimensions an expression of energy of the body executing SHM . assuming this energy depends upon (1) mass (m) (2) frequency (f)
- (3) amplitude of vibration (r) [Sol :a=1 , b=2 , c =2]
- Q5) The terminal velocity 'v' of a spherical body falling in a liquid is found to be depend upon
- a) radius of body (r)
- b) coefficient of viscosity ($^{\eta}$)
- c) viscous drag experienced by the body (F) [Sol:a = -1, b = -1, c = 1]
- Q6) Check the correctness of the following relation : $T = 2\pi \sqrt{\frac{l}{g}}$ [correct]

Q7) The wavelength λ associated with moving particle depend upon its mass (m) , velocity (v) and $\lambda = \frac{h}{mv}$.Check the correctness of the given relation. [correct]

Q8) Find dimensions of a and b in the relation : $F = a\sqrt{x} + bt^2$ where f = force , x=dist , t=time [Sol : a =[ML^{1/2}T⁻²] , b = [MLT⁻⁴]]

Q9) In the given equation $y = A \sin(\omega t - Kx)$, find the dimensional formula of ω and K. Given x is distance and t is time. [Sol: T^{-1} , L^{-1}]

Q10) The S.I unit of universal gravitational constant is 6.67 * 10-11 Nm2 Kg-2 . convert this value in to corresponding c.g.s with the help of dimensional formulae. [Sol: 6.67 \times 10⁻⁸]

Q11. The density of mercury is $13.6~{\rm g~cm^3}$ in CGS system. Find its value in SI units.

Q12. Write Disadvantages of Dimensional Analysis